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 A B S T R A C T

The rapid worldwide formation and expansion of glacial lakes has increased the likelihood of glacial lake 
outburst floods, threatening lives and infrastructure, particularly in vulnerable mountain communities. Given 
the rapid increase in the popularity of artificial intelligence methods for remote sensing of glacial lakes, a 
comprehensive review is essential. We survey a decade (2015–2024) of research on glacial lake monitoring 
from space, with a focus on classical machine learning and deep learning approaches. We identify key trends, 
research gaps, and best practices for future studies. Most studies rely on optical imagery, especially Landsat-8 
and Sentinel-2, while Sentinel-1 serves as a complementary radar source. However, monitoring glacial lakes in 
mountainous regions remains a challenge on cloudy days due to the limitations of radar and the unusability 
of optical data. Deep learning, particularly U-Net and DeepLab derivatives, dominates learning-based glacial 
lake studies but remains computationally demanding. Critical challenges involve balancing performance 
gains against trade-offs in data availability, computational cost, and model transferability. Geographic and 
methodological gaps, especially in regions experiencing rapid lake growth, underscore the need for broader 
spatial coverage and improved spatiotemporal model generalization. Moreover, transitioning from a focus on 
static seasonal mapping to frequent multi-temporal monitoring is beneficial for understanding glacial lake 
evolution and outburst flood hazards. Adapting emerging deep learning architectures to integrate multispectral, 
hyperspectral, and radar data could enhance glacial lake detection capabilities. Furthermore, thorough inter-
method comparisons, benchmarking with rigorous evaluation metrics, and open-sourcing datasets and code 
would facilitate robust, large-scale glacial lake monitoring efforts.
1. Introduction

Approximately 1.74% of Earth’s water is stored in glaciers, ice 
caps, and permanent snow cover, accounting for about 68.7% of global 
freshwater (Shiklomanov, 1993). Glacial lakes are water bodies formed 
by the accumulation of meltwater in depressions created by glacier 
retreat, including those dammed by ice, moraines, or other glacially 
deposited materials (Costa and Schuster, 1987). Climate change-driven 
glacier mass loss is accelerating the formation and expansion of glacial 
lakes (NASA Decadal Survey, 2007; King et al., 2019; Shugar et al., 
2020).

Globally, more than 110,000 glacial lakes have been documented, 
with a total mapped area of approximately 15,000 km2, based on 
studies conducted between 2006 and 2020 (Zhang et al., 2024). Glacial 
lakes are integral to regional freshwater systems, storing meltwater and 
influencing hydrological cycles (Mingwei et al., 2025). At the same 
time, due to their dynamic nature, some of these lakes are sources 
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of Glacial Lake Outburst Flood (GLOF)s, endangering lives and critical 
infrastructure worldwide (Emmer et al., 2022; Taylor et al., 2023). Over 
3000 GLOFs were recorded from the year 850 to 2022, while the total 
glacial lake area increased by approximately 22% per decade between 
1990 and 2020 (Zhang et al., 2024). 

Multi-temporal monitoring of glacial lakes is beneficial for assessing 
GLOF hazards, developing early warning systems for the protection 
of downstream communities, and improving water resource manage-
ment (Rinzin et al., 2023; Ahmed, 2024; Emmer, 2024). However, 
implementing effective and scalable monitoring strategies remains chal-
lenging due to the inherent variability in glacial lake characteristics, 
including differences in size, shape, depth, and turbidity. Many of 
these lakes are small (area <0.1 km2) and remain frozen for several 
months, exhibiting distinctive geomorphologic traits (Carrivick and 
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Tweed, 2013; Costa and Schuster, 1987; Clague and Evans, 2000). Be-
yond these physical variations, the diversity of lake formation environ-
ments makes systematic observation difficult. These include proglacial 
(rock-dammed, moraine-dammed, ice-dammed), ice-marginal (glacier-
blocked), supraglacial, and subglacial settings (Costa and Schuster, 
1987).

In situ measurements of glacial lakes capture a wide range of 
parameters, including lake water level, area changes, bathymetry, tem-
perature, precipitation, and ice cover, among others (Fujita et al., 2009; 
Tedesco and Steiner, 2011; Sharma et al., 2018). These measurements 
are often sparse, as field campaigns to glacial lakes are challenging 
due to their remote, high-altitude, or high-latitude locations adjacent 
to glaciers (Treichler et al., 2019). Consequently, satellite and air-
borne observations often serve as complementary, and in some cases, 
primary methods for large-scale and continuous monitoring. These 
remote sensing techniques specifically focus on the geographic extent 
of surface lakes. However, they provide critical insights where direct 
measurements are limited (Huang et al., 2018).

Several approaches exist for mapping glacial lake extent using 
remote sensing. An example is Geographic Information System (GIS)-
assisted manual lake boundary delineation and inventory creation 
methods. These methods leverage human expertise to interpret data 
and define boundaries from satellite observations (Ukita et al., 2011; 
Raj and Kumar, 2016; Petrov et al., 2017; Senese et al., 2018, etc.). 
However, such manual approaches are feasible only on a small scale 
and/or for a few time steps due to their labor intensive nature. In con-
trast, automated remote sensing methods offer greater scalability and 
enable the fusion of information from multiple data sources—including 
optical and radar imagery.

There has been a notable rise in the popularity of classical ML 
and DL methods for land cover classification applications over the 
past decade. These learning-based methods, in conjunction with remote 
sensing, have achieved significant breakthroughs across various sub-
fields of geoscience (Karpatne et al., 2019; Camps-Valls et al., 2021; 
Ge et al., 2022). Such advancements also span hydrosphere (Sit et al., 
2020) and cryosphere (Liu, 2021) monitoring.

Unlike traditional non-ML approaches, data-driven ML algorithms 
effectively learn intricate patterns from representative remote sensing 
datasets, enabling more accurate and efficient analysis (Maxwell et al., 
2018). DL methods, while demanding in terms of training data re-
quirements, automatically extract features – such as texture and spatial 
relationships – directly from data. They learn hierarchical represen-
tations and outperform classical ML methods in many fields of Earth 
sciences (Tuia et al., 2024; Taylor et al., 2021). However, these data-
driven methods also have limitations. These include high data and com-
putational demands, large model sizes that hinder deployment, chal-
lenges in geographical transferability, and debatable interpretability 
and explainability.

The potential value and widespread adoption of diverse learning-
based methods underscore the need for a detailed review. A compre-
hensive evaluation of existing approaches, along with a synthesis of 
their strengths and limitations, the establishment of best practices, and 
the identification of key research gaps, is essential.

Though numerous research papers in the past decade have ap-
plied ML/DL to map and monitor glacial lakes, a dedicated review 
remains absent. Some surveys exist on related topics—such as ML/DL 
for water body detection (Gautam and Singhai, 2024) and lake-water 
level fluctuation forecasting (Sannasi Chakravarthy et al., 2022). How-
ever, none specifically focus on remote sensing of glacial lakes. Sim-
ilarly, reviews on non-ML approaches – such as bibliometric analysis 
of glacial lake identification (Zhengquan et al., 2023), frozen lake 
extraction from optical data (Jawak et al., 2015), and remote sensing 
applications in the mountain cryosphere (Taylor et al., 2021) – offer 
valuable insights. However, they do not address Artificial Intelligence 
(AI)-driven methodologies. The paper is structured as follows: Sec-
tion 2 discusses spatiotemporal aspects in learning-based glacial lake 
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studies, while Section 3 provides an overview of the remote sens-
ing data used. Section 4 explores ML/DL methodologies for studying 
proglacial, ice-marginal, and supraglacial lakes from space, followed 
by Section 5, which presents key challenges and limitations. Finally, 
Section 6 concludes with recommendations for future research.

2. Learning-based glacial lake studies: A spatio-temporal perspec-
tive

2.1. Beyond seasonal mapping: Toward multi-temporal monitoring

The first step in a glacial lake study is mapping. This involves 
creating an inventory or map of lakes in a study region using an 
underlying ML/DL model, typically based on satellite data from a single 
point in time. Mapping is essential for providing a snapshot of glacial 
lake extents and serving as a proof-of-concept. However, it alone cannot 
capture seasonal fluctuations, indicate long-term trends, or assess GLOF 
hazard potential.

The next critical step is monitoring, which builds on repeated map-
ping to systematically track glacial lake evolution over time. Learning-
based studies such as Banerjee and Bhuiyan (2023), Lutz et al. (2023), 
and Sharma and Prakash (2023), among others, have reported moni-
toring efforts that extend beyond one-time mapping.

However, most studies (e.g., He et al., 2021; Wang et al., 2021) 
focus solely on mapping, prioritizing static lake characterization over 
understanding temporal dynamics. Effective monitoring requires re-
peated observations while balancing trade-offs between update fre-
quency and various challenges. These challenges include data gaps due 
to cloud cover and inconsistent data acquisition, seasonal variability, 
and increased computational demands. A key constraint is the lim-
ited availability of suitable multi-temporal satellite imagery. This is 
especially challenging in high-mountain regions where frequent cloud 
cover and the lack of usable optical images (in winter) severely restrict 
observation windows.

Notably, repeated mapping – conducted as frequently as observation 
conditions allow – differs from multi-temporal monitoring. The latter 
involves a systematic analysis of temporal patterns, often designed to 
capture intra-annual variations and seasonal dynamics. To ensure the 
accuracy and reliability of new glacial lake extent products derived 
from learning-based algorithms, rigorous evaluation of multi-temporal 
monitoring outcomes is recommended before operational deployment.

Environmental factors such as cloud cover, haze, ice and snow 
cover, fog, evaporation, and surface reflectance – also referred to as 
sun glint or sun glitter – vary significantly over time in glaciated 
regions. These variations pose challenges for consistent glacial lake 
monitoring across all seasons (Mölg and Hardy, 2004; Hock, 2005). 
Frozen lakes, particularly supraglacial lakes or those in direct contact 
with glaciers or covered by snow, are difficult to distinguish spectrally 
from surrounding ice in optical satellite imagery. In some cases, spectral 
similarity makes detection nearly impossible during colder months. 
ML/DL methods can partially overcome this by learning spatial and 
contextual patterns beyond raw spectral values. Convolutional Neural 
Network (CNN)s extract multi-scale features such as texture, edges, 
and shape, while attention-based models use broader spatial context 
to improve classification. These approaches are effective when frozen 
lakes have distinct morphological boundaries. However, when both 
spectral and spatial cues are weak – such as under uniform snow cover 
– performance remains limited, regardless of model complexity.

Seasonal surface variations also affect radar-based glacial lake de-
tection. Flat water surfaces typically exhibit low backscatter (Bauer-
Marschallinger et al., 2021). Wind or thin floating ice can roughen 
water surfaces, increasing backscatter (Freilich and Vanhoff, 2003; 
Shaposhnikova et al., 2023). Snow has higher backscatter due to its 
heterogeneous structure (Rott, 1984). Ideally, the dataset used to train 
an ML/DL model should be representative of these variations to ensure 
robust detection across diverse environmental conditions.
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Table 1
Examples of learning-based glacial lake studies conducted during specific seasons with favorable observation 
conditions.
 Publication Season Primary study site  
 Dirscherl et al. (2020) January–February Antarctica  
 Dirscherl et al. (2021) December–February Antarctica  
 Yuan et al. (2020) May–September Southwest Greenland  
 Qayyum et al. (2020) May–November Hind Kush Karakoram Himalaya 
 Wang et al. (2021) September–November Himalayas  
 Xu et al. (2023) Summer Eastern Himalaya  
 Zhao et al. (2023) July–November High Mountain Asia  
 Tang et al. (2024) June–November Third Pole Region  
To minimize the impact of seasonal challenges, learning-based 
glacial lake studies often target months with optimal data quality. For 
example, Wu et al. (2020) avoided July to September due to frequent 
cloud cover (southeastern Tibet), which hinders optical remote sensing. 
They also excluded January, when frozen conditions and lake shrinkage 
complicate the detection of lakes. As a result, they selected October and 
November, when melting slows, lake extents stabilize, and cloud cover 
decreases. Further examples of learning-based studies that targeted 
periods with favorable observation conditions are presented in Table 
1.

Strategies constrained by seasonal conditions improve data quality, 
reduce cloud interference, and capture stable lake conditions. However, 
they neglect temporal variability and the associated risk potential, 
which are essential in the context of non-stationary lakes that form 
during the melt season or during glacier surges. To address these 
limitations, future studies should expand training datasets with repre-
sentative reference data spanning multiple seasons and develop models 
that learn key intra-annual variations. Multi-sensor fusion using all 
available and suitable satellite sources, including complementary sen-
sors such as Synthetic Aperture Radar (SAR), can improve temporal 
coverage. SAR examples include Sentinel-1 (S1) [C-band, freely avail-
able], ICEYE-X1 (X-band, commercial). Augmenting the training data 
set or using generative models to simulate cloud penetrating synthetic 
imagery may also help.

2.2. Glacial lake products: types and resolutions

ML/DL-based glacial lake products differ in type, temporal reso-
lution, and spatial resolution. Maximum Lake Extent (MLE) products, 
such as those by Wang and Sugiyama (2024), delineate the largest 
observed lake boundary, making them valuable for GLOF hazard assess-
ment and long-term trend analysis. While straightforward to interpret, 
MLE overlooks short-term lake fluctuations. In contrast, Per-Pixel Clas-
sification (PPC) products, used in studies like Yuan et al. (2020), He 
et al. (2021) and Thomas et al. (2023), etc., capture precise water 
extents. When applied over time, they support the analysis of seasonal 
and interannual variations. Some studies, such as Xu et al. (2023), 
integrate both PPC and per-lake classification.

Regarding temporal resolution, Dirscherl et al. (2021) for example, 
produced monthly products, while Yuan et al. (2020) generated yearly 
products. Higher temporal resolutions (e.g., weekly or monthly) en-
hance the detection of seasonal changes. Conversely, lower resolutions 
(e.g., yearly) prioritize computational efficiency and broader trend 
analysis. The required temporal resolution should align with the study 
objective—whether focused on long-term trend analysis or short-term 
event monitoring, such as rapid GLOF response.

Spatial resolution also varies based on input data. High-resolution 
(≤3 m) products (e.g., Siddique et al., 2023; Thomas et al., 2023) are 
essential for mapping and monitoring small glacial lakes and resolving 
dynamic and detailed lake boundaries. Low-resolution (≥30 m) prod-
ucts (e.g., Zhao et al., 2023; Yuan et al., 2020) are efficient for large-
scale, long-term global assessments. However, they may miss small 
lakes or subtle changes in lake extent. Medium-resolution (≈10 m) 
products (e.g., Basit et al., 2022; Xu et al., 2023) strike a balance 
3 
between spatial detail and computational efficiency, making them well-
suited for regional studies.

Balancing the need for spatial and temporal detail with resource 
constraints and data availability is important. We recommend select-
ing the appropriate product type and resolution based on the study 
objective.

3. Remote sensing data used: An overview

In learning-based glacial lake studies, optical satellite sensors are 
preferred [primarily Landsat-8 (L8) and Sentinel-2 (S2)] over radar 
sensors (Fig.  1). Of the 48 studies reviewed (Fig.  2), 43 (89.6%) used 
optical data, 16 (33.3%) used SAR data, and 12 (25%) used both 
(Appendix  A).

Despite radar’s all-weather, day-and-night imaging capabilities, op-
tical sensors remain preferred due to their multispectral bands, which 
effectively capture surface water changes over time. While radar helps 
enhance observation frequency, optical sensors improve lake detection 
accuracy. The wider range of free optical data options available over 
the past decade – such as L8, S2, PlanetScope – compared to SAR [S1], 
has further reinforced this preference. Among freely available datasets, 
optical sensors (S2) also offer higher spatial resolution (includes 10 m 
bands) than SAR (S1, ≈20 m). Furthermore, SAR requires relatively 
extensive pre-processing before analysis (Mullissa et al., 2021). How-
ever, optical remote sensing can be affected by cast shadows and 
turbidity variations. On the other hand, using SAR data in mountainous 
regions presents challenges due to complex terrain (more details in 
Section 3.1). These include geometric and radiometric distortions (Rott, 
1984; Wu et al., 2021) .

L8 is the most commonly used (22 papers) sensor despite its mod-
erate spatial (30–100 m) and temporal resolution (16 days). Most 
L8-based studies rely on Operational Land Imager (OLI) bands. These 
bands provide higher radiometric resolution (12-bit), improved signal-
to-noise ratio, and narrower spectral bands compared to previous Land-
sat missions (Mancino et al., 2020). Few exceptions (e.g., He et al., 
2021; Chen et al., 2022; Kaushik et al., 2022) incorporate Thermal 
InfraRed Sensor (TIRS) data.

L8 is followed by S2 (20 studies) with slightly higher spatial 
(10–60 m) and temporal (5 days) resolution (Fig.  1, Appendix  A). 
PlanetScope imagery is also preferred (5 papers) due its high spatial 
(3 m) and temporal (daily) resolution. However, its lower spectral 
resolution and commercial constraints restrict its broader applicability.

Among radar sensors, S1-SAR is the primary choice (15 studies), 
particularly the Interferometric Wide (IW) swath Ground Range De-
tected (GRD) mode. Topographic data such as Digital Elevation Model 
(DEM) are used to distinguish lake pixels from shadows and enhance 
classification accuracy. No strong preference for a specific DEM is 
observed (Fig.  1, Appendix  A).

No existing studies have incorporated Surface Water and Ocean 
Topography (SWOT) data (Alsdorf and Lettenmaier, 2003; Vinogradova 
et al., 2025). SWOT’s high-resolution swath altimetry enables precise 
monitoring of water level changes in lakes, rivers, and reservoirs (Bian-
camaria et al., 2016; Getirana et al., 2024). Its unique water surface 
elevation data provides an unprecedented opportunity to estimate lake 
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Fig. 1. Distribution of input satellite sensors (optical, radar) and topography data used in ML and DL approaches for glacial lake studies. This plot is based on 47 
publications. Cao et al. (2024) was excluded as it used Google Earth imagery, comprising a mix of images from IKONOS, QuickBird, GeoEye, WorldView, SPOT, 
and Pleiades. More details are in (Appendix  A).
Fig. 2. Chronological histogram (till 2024) of published glacial lake studies (total: 48) that used satellite data and learning-based approaches. Total counts, 
category-wise counts, and percentages are annotated above each bar.
storage variations (Wu et al., 2022). This capability is valuable for 
assessing potential GLOF occurrences particularly in large supraglacial 
lakes in Greenland and Antarctica.

3.1. Single- and multi-sensor approaches: Pros and cons

ML/DL approaches have effectively used optical satellite data as 
standalone input for glacial lake studies in both mountainous (e.g., 
Basit et al., 2022; Siddique et al., 2023) and polar regions (e.g., Yuan 
et al., 2020; Halberstadt et al., 2020). However, their reliance on 
cloud-free conditions limits their applicability.

In contrast, radar-only methods have shown success only in non-
mountainous regions, revealing a research gap. For example, Dirscherl 
et al. (2021) achieved high accuracy (𝐹1 score: 0.93) in detecting 
supraglacial lakes in Antarctica using S1 alone. In mountainous envi-
ronments, however, radar has generally been used in combination with 
optical imagery (e.g., Wang et al., 2021; Wu et al., 2020). While Wang 
et al. (2021) achieved a satisfactory Intersection-over-Union (IoU) score 
(0.59) in an S1-only experiment, Wu et al. (2020) did not evaluate radar 
data independently.

Geometric and radiometric distortions – such as foreshortening, 
layover, shadowing, and backscatter variability – pose significant chal-
lenges for radar remote sensing in mountainous terrain. These distor-
tions introduce artifacts that affect both spatial structure and pixel 
intensities. When present in training data, the ML/DL model may 
learn spurious correlations – e.g., misinterpreting terrain shadow as 
water – leading to a corrupted decision boundary and resulting in 
both false positives and false negatives. Conversely, if the model is 
trained on clean or corrected data but applied to distorted test scenes, 
4 
its predictions may still degrade due to unseen variance in geometry 
or backscatter. This may also result in misclassification of actual lake 
pixels as background (false negatives) or surrounding terrain as lake 
(false positives). Novel neural network architectures optimized for SAR 
and enhanced pre-processing techniques are needed to mitigate these 
issues. However, even with these strategies, matching the accuracy of 
optical data will be a challenge.

Given the limitations of standalone radar data, integrating optical 
and SAR data has emerged as an effective strategy in mountainous 
regions. This approach leverages their complementary strengths to en-
hance classification accuracy and ensure data availability. Data-driven 
approaches learn rich spectral information from optical data under 
clear conditions and geometric features from SAR data.

Studies have demonstrated improved performance through fusion:
Wu et al. (2020) observed a 4% increase in mIoU when adding S1 to 
L8. Additionally, Hu et al. (2024) achieved their highest IoU (0.84) 
when integrating S2, S1, and topographic data. Multi-sensor (including 
multi-mission) techniques typically rely on a primary sensor with one 
or more auxiliary sensors. In radar-optical fusion for high-mountain 
glacial lakes, optical data remains the primary input despite frequent 
cloud cover.

Multi-sensor fusion introduces challenges as well. First, temporal 
mismatches between acquisitions can complicate fusion. This was re-
ported by Wang et al. (2021), where a 6-day gap between optical and 
radar data required high-level semantic fusion. Second, absolute geolo-
cation shifts between sensors can introduce errors. For instance, Wu 
et al. (2020) had to address 1–2 pixel discrepancies between S1 and 
L8 using a mutual information-based coregistration method. Neverthe-
less, the benefits of multi-sensor fusion often outweigh its challenges, 
making it a valuable approach for glacial lake studies.
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3.2. Role of sensor resolution in monitoring hazardous lakes

It is relatively more important to monitor glacial lakes that are 
prone to outburst floods. However, hazard potential is not determined 
by lake size. Numerous studies have demonstrated that GLOF impacts 
do not correspond to lake size and that also small to very small lakes 
(area <0.1 km2) can trigger devastating outburst floods (Allen et al., 
2016; Vilca et al., 2021; Sattar et al., 2022; Chen et al., 2023).

Larger lakes are detected with relatively high accuracy by underly-
ing ML/DL models. For instance, Wu et al. (2020) reported an overall 
IoU of 0.62 for all lakes using L8 and S1 data, which improved to 0.8 
for lakes larger than 0.1 km2. Notably, only 17.4% of the 8262 mapped 
lakes exceeded this size threshold. Most glacial lakes are typically 
small; for example, 85.3% of Himalayan glacial lakes are under 0.1 
km2 (Wang et al., 2021). In the Eastern Himalayas, the average size 
is even smaller at 0.053 km2 (Xu et al., 2023). Given their abundance, 
smaller lakes (i.e. smaller than 0.1 km2) statistically experience more 
outbursts. Yet, their mapping and monitoring remains challenging due 
to detection limitations, with only few learning-based studies focusing 
on them. The minimum lake size considered for monitoring should be 
guided by the intended application.

Detecting glacial lakes smaller than 0.01 km2 using S2 and S1 
input data remains a challenge even for ML/DL approaches. This lim-
itation, however, is more attributable to sensor resolution than to 
the methodologies themselves. To improve detection of these tiny 
lakes, integrating higher spatial-resolution satellite data, such as Plan-
etScope (e.g., Siddique et al., 2023; Xu et al., 2024), Pléiades, World-
view, etc., could be beneficial. Nevertheless, images from these sensors 
are costly, making them more suitable for individual lake studies or 
quality assessments rather than large-scale analysis.

Pan-sharpening the optical data could be useful too (Zheng et al., 
2021). Additionally, combining Unmanned Aerial Vehicle (UAV) im-
agery with satellite data could support local-scale monitoring cam-
paigns (Alvarez-Vanhard et al., 2021). However, scalability to country- 
or global-level would be extremely challenging, if not practically im-
possible.

3.3. Importance of spectral indices, atmospheric correction

Spectral indices (Montero et al., 2023) are combinations of spec-
tral bands (e.g., ratios, normalized differences) designed to enhance 
specific surface properties. In the context of glacial lakes, they help 
highlight features such as open water, ice, or snow while reducing 
noise from shadows, rocks, and other interfering factors. Integrating di-
verse spectral indices within learning frameworks has improved glacial 
lake detection. This has been observed in both high mountain (e.g., 
Wangchuk and Bolch, 2020; Zhao et al., 2023) and polar glacier 
lakes (e.g., Yuan et al., 2020; Wang and Sugiyama, 2024).

Zhang et al. (2020a) found that normalized indices performed better 
than individual bands or band ratios. However, they also reported 
high correlations among indices, limiting potential accuracy gains from 
index combinations. In their analysis, Normalized Difference Water In-
dex (NDWI)-G (McFeeters, 1996) outperformed other indices, including 
Enhanced Water Index (EWI) and NDWI-B (Huggel et al., 2002). NDWI-
G [Green & Near InfraRed (NIR)] is better suited for detecting deep, 
clear water bodies, while NDWI-B (Blue & NIR) is more sensitive to 
shallow and turbid waters.

In contrast, Dirscherl et al. (2020) achieved better results with S2 
bands than indices. This is likely due to atmospheric correction, which 
removes atmospheric effects caused by the scattering and absorption of 
solar radiation by atmospheric gases (Gao et al., 2009). This process 
prepares satellite data for remote sensing applications. Zhang et al. 
(2020a), on the other hand, used Top of Atmosphere (ToA) reflectance. 
Furthermore, among the 12 indices used, Dirscherl et al. (2020) found 
Tasseled Cap for Wetness (TCwet, Kauth and Thomas, 1976; Schwatke 
et al., 2019) and Automated Water Extraction Index (𝐴𝑊𝐸𝐼 , Feyisa 
𝑛𝑠ℎ
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et al., 2014) to be more important than NDWI-G. Regional differences 
in pixel composition within periglacial areas, notably between Antarc-
tica (Dirscherl et al., 2020) and Asian mountain ranges (Zhang et al., 
2020a), may also have contributed to these contrasting findings.

Atmospheric correction is common in data-driven glacial lake stud-
ies (Jha and Khare, 2017; Wendleder et al., 2021; He et al., 2021; 
Wang et al., 2022c). However, none have quantitatively assessed its 
direct impact on the performance of the underlying ML/DL models. 
This presents a significant research opportunity. At the same time, 
atmospheric correction has a high computational overhead, and many 
ML/DL models have performed well without it (Wangchuk and Bolch, 
2020; Wu et al., 2020; Zhao et al., 2023; Hardie et al., 2024, etc.). 
Hence, an initial investigation using ToA reflectance is recommended 
before conducting a detailed analysis.

4. Learning-based approaches for glacial lake studies

Glacial lake studies based on remote sensing rely primarily on 
spectral indices and/or backscatter/reflectance thresholds. However, 
such approaches often require threshold adaptation for large-scale an-
alyzes and multi-temporal monitoring (Jawak et al., 2015; Wangchuk 
and Bolch, 2020). While generally effective, these methods face sig-
nificant challenges in mountainous environments. Complex terrain, 
varying weather conditions, changes in glacier dynamics, and seasonal 
variations in mountains contribute to notable inaccuracies in identify-
ing glacial lakes (Bolch et al., 2011). Moreover, such methods often 
neglect contextual information from neighboring pixels or temporal 
sequences. They make decisions solely based on individual pixel values. 
Consequently, ML/DL approaches have become widespread.

4.1. Chronological progression & methodological distribution

The first learning-based glacial lake study (Jain et al., 2015), pub-
lished a decade ago, used ASTER multispectral imagery. They used a 
Support Vector Machine (SVM) classifier for the semi-automatic detec-
tion of glacial lakes in the Chamkhar Chu Basin, Hindukush Himalaya, 
Bhutan.

Of the 48 studies surveyed (Appendix  B), 31 (64.6%) employed 
DL approaches, while 17 (35.4%) used classical ML techniques (Fig. 
2). This reflects the field’s growing preference for DL methodologies. 
Although DL is a subset of ML, they are addressed separately in our 
review to highlight distinct trends.

Most studies on glacial lakes applying ML or DL were published in 
2022 (11 papers), with at least seven DL articles consistently appearing 
each year since 2022. Fig.  2 provides a chronological overview of 
the literature. It includes both published papers and a book chap-
ter (Thati et al., 2021) up to 2024. Fig.  3 illustrates the distribution 
of methodologies reported in these studies.

Research output grew substantially since 2020, coinciding with the 
introduction of the first DL-based approach (Yuan et al., 2020). This 
study used a CNN classifier and L8 imagery to detect supraglacial 
lakes in Southwest Greenland. 46 out of the 48 studies were published 
from 2020 onward, underscoring the growing focus on learning-based 
approaches in glacial lake remote sensing.

In ML/DL, classification predicts discrete class categories, while 
regression estimates continuous numerical values (Bishop, 2006). As of 
2024, all learning-based approaches for glacial lake studies have been 
classification-based, with no reported use of regression models.

Among classification-based methods, CNN (Lecun et al., 1998) vari-
ants are predominant (Appendix  C). U-Net (Ronneberger et al., 2015) 
is the most widely applied CNN architecture (Fig.  3). DeepLab (Chen 
et al., 2015, 2018a,b) variants (Appendix  D), known for their advanced 
semantic segmentation capabilities, are relatively less explored. This is 
likely due to the additional resources required to train these relatively 
parameter-heavy models, which demand large, representative datasets. 
Among ML approaches, Random Forest (RF) and SVM are widely 
used (Cortes and Vapnik, 1995; Breiman, 2001; Mountrakis et al., 
2011).
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4.2. Distribution of study sites and model transferability

Glacial lakes are predominantly located in glaciated mountain re-
gions, particularly at medium-to-high latitudes, as well as in the polar 
lowlands (Shugar et al., 2020). Over 80% of these lakes are concen-
trated in Greenland, the Alaska Range, Southern Andes, High Mountain 
Asia (HMA), and the eastern Canadian Arctic (Zhang et al., 2024). 
Despite this broad distribution, ML/DL-based studies on glacial lake 
mapping and monitoring have primarily focused on a limited subset 
of these regions, highlighting significant research gaps. Table  E.6 (Ap-
pendix  E) presents key regions with glacial lakes, notable publications 
that investigated them, and ML/DL studies that considered these re-
gions as primary study sites. It also includes studies that evaluated the 
transferability of their ML/DL models in these regions, even if they 
were not the primary study sites.

HMA has received the most research attention from learning-based 
approaches, followed by Greenland and Antarctica (Appendix  E). This 
geographic trend aligns with findings by Calamita et al. (2024). They 
reported that remote sensing is underutilized in studying lake ecosys-
tem shifts in Europe (1%) and North America (5%). However, it is 
significantly more applied in Asia (23%) to monitor climate-related 
changes in lakes.

In contrast, several regions with significant GLOF activity remain 
understudied despite documented evidence. Historically, more than 
60% of GLOFs have occurred in Alaska, HMA, and Iceland (Zhang 
et al., 2024). Northern Andean glacial lakes have also produced several 
GLOFs. The volume of Patagonian lakes (excluding the three largest) 
more than doubled from 1990–1999 to 2015–2018 (Shugar et al., 
2020).

The risk associated to GLOF hazards is a key reason for this uneven 
geographic distribution of ML/DL-based glacial lake mapping stud-
ies. High-latitude regions have the highest number of glacial lakes, 
strongest lake growth rates (Shugar et al., 2020) and probably also 
experience most GLOF events. However, the impacts of GLOFs in 
terms of damage and loss – and thus GLOF risk – is much higher 
in lower- and mid-latitude mountain regions. This is due to both the 
higher concentration of people and infrastructure exposed to GLOFs, 
and, related, also higher vulnerabilities to GLOFs of societies in these 
densely populated mountain ranges (Taylor et al., 2023). This is further 
evidenced by the fact that even smaller lakes can cause major disasters 
in Andes (Vilca et al., 2021) or the Alps (Huggel et al., 2003). HMA is 
the only region that is a hotspot of GLOF risk and well studied in terms 
of ML/DL-based solutions for glacial lake mapping.

Research on the Andes remains limited, with only Wangchuk and 
Bolch (2020) conducting a dedicated study. Additionally, Qayyum et al. 
(2020) and Tang et al. (2024) included Andes in their transferability 
assessments. Similarly, the European Alps have been the focus of only 
one study. Wangchuk and Bolch (2020) examined the Andes and the 
Swiss Alps, however the study primarily focused on six locations in 
HMA.

Other key regions, such as the Canadian and Russian Arctic, Scan-
dinavia, Iceland, and New Zealand, remain unexplored using learning-
based approaches, possibly due to lower risks associated with the 
abundant number of glacial lakes in these regions. This reveals a 
research opportunity not only to improve spatial coverage but also to 
enhance training datasets and advance algorithm development. Inter-
estingly, the fastest-growing lakes (in terms of areal expansion) are 
located in Iceland, the Russian Arctic, and Scandinavia (Shugar et al., 
2020). These regions offer valuable testbeds for developing and eval-
uating new glacial lake mapping methods, which can later be applied 
to high-risk regions. Comprehensive study of such regions is beneficial 
for building generalizable, globally robust approaches.

To further examine the spatial trends of ML/DL studies, we inves-
tigate geographical distribution of the methodologies. The reviewed 
approaches are categorized into six groups in Fig.  4: three for DL (U-
Net, other CNNs, and other DL methods) and three for ML (RF, SVM, 
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and other ML methods). Each continent is represented by a distinct 
bar plot. Each methodology is counted only once per continent, even 
if multiple study sites within the same continent were analyzed. For 
instance, Zhao et al. (2023), who assessed over 5 sites in HMA using 
a CNN, is considered a single entry. However, studies that applied 
multiple algorithms to the same site (e.g., Halberstadt et al. (2020)) are 
counted separately for each methodology used. Similarly, studies ap-
plying the same algorithm in different continents (e.g., Wangchuk and 
Bolch (2020)) are counted separately for each continent considered.

Two DL studies (Chatterjee et al., 2022; Thomas et al., 2023) were 
excluded from Table  E.6 (Appendix  E) and Fig.  4. Although Chatterjee 
et al. (2022) included Lake Tibet, a glacial lake, their primary focus 
was on non-glacial lakes. Similarly, Thomas et al. (2023) investigated 
supraglacial lakes across the Arctic without specifying distinct study 
sites, making their inclusion in our region-clustered spatial distribution 
analysis difficult. However, both studies remain part of the broader 
methodological assessment.

DL techniques, particularly U-Net and other CNNs, are more com-
monly applied in HMA (Fig.  4). ML methods like RF and SVM are also 
more frequently used in HMA. However, they have a relatively stronger 
presence in Antarctica compared to DL.

Regardless of the technique, such data-driven models, if trained 
on small or non-representative datasets, risk overfitting. This reduces 
their effectiveness when applied to previously unseen regions or time 
periods. Therefore, ensuring spatiotemporal transferability is crucial for 
enhancing model robustness.

Many learning-based methods have been confined to their primary 
study sites. However, some notable exceptions assess spatial transfer-
ability by training on one continent and testing on another (Table 
E.6, Appendix  E). For instance, Wangchuk and Bolch (2020) devel-
oped their approach for the Himalayas and tested it in the Alps and 
Andes. Their qualitative results from the Andes aligned with datasets 
from the National Water Authority of Peru. Similarly, Dirscherl et al. 
(2021) evaluated their model’s generalizability (trained on data from 
Antarctica) by applying it to supraglacial lakes in Southwest Greenland.

Although the qualitative results of Dirscherl et al. (2021) were 
promising, large supraglacial lakes common in Greenland were under-
represented in their training dataset. This led to overfitting despite 
extensive data augmentation (Section 4.5.3). Fine-tuning with represen-
tative data from Greenland could improve the performance. However, 
this was not tested or reported. Likewise, Tang et al. (2024) trained 
their model on 15 mountain ranges in the Third Pole region and, after 
fine-tuning, demonstrated its qualitative generalization to the Patag-
onian Andes, Alaska, and Greenland. However, none of these studies 
provided quantitative validation in their transferability experiments. 
This highlights a key gap in assessment.

Temporal transferability is equally critical, as models must maintain 
performance when applied to data from the same study site across 
different time periods. It is less challenging in stable environments. 
However, it becomes significantly harder in rapidly changing con-
ditions, requiring models to adapt to both periodic (seasonal) and 
non-periodic (long-term) changes. An example is Dirscherl et al. (2020), 
who investigated the spatiotemporal transferability of their RF model. 
They trained it on supraglacial lake occurrences from summer 2019 
across fourteen regions. Evaluation was conducted on eight spatially 
independent regions from summers 2017 and 2018 across the Antarctic 
ice sheet. Their model achieved impressive average 𝐹1 scores of 0.997 
for the non-water class and 0.86 for the water class.

Models that generalize effectively across diverse spatial and tempo-
ral contexts are essential but not yet standard practice. Future studies 
should prioritize comprehensive spatiotemporal transferability assess-
ments, incorporating both quantitative and qualitative evaluations. 
Openly sharing datasets and ground truth annotations will further sup-
port these efforts. It will foster collaboration and enable more rigorous 
model development and evaluation.
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Fig. 3. Distribution of ML (31 methodologies) and DL (39 methodologies) approaches proposed in 48 studies on glacial lakes using satellite data. Deeplab includes 
its variants; methods without numbers in brackets were each used once. More details are in (Appendix  C). Refer to the glossary (Appendix  G) for full forms.
Fig. 4. Continent-wise distribution (primary study site only) of ML/DL methodologies (six categories: 3 each for DL and ML) used in glacial lake remote sensing 
studies. Background map credit: https://www.naturalearthdata.com/. Refer to the glossary (Appendix  G) for full forms.
4.3. Strong vs. weak supervision: Challenges, opportunities

Most of the glacial lake studies that apply ML/DL methodolo-
gies (Fig.  3) rely on supervised learning, which depends heavily on 
labeled datasets. However, generating ground truth annotations is time-
consuming and resource-intensive. To mitigate this, it is essential to 
develop more efficient methods for generating reference labels. Another 
approach is to adopt weakly supervised learning (Chapelle et al., 2009; 
Karamanolakis et al., 2021), which uses minimal, noisy, or incomplete 
labels. This will reduce annotation effort, enabling broader and more 
scalable application of ML and DL analyses. Additionally, it will help 
fully leverage the vast and ever-growing volumes of available remote 
sensing data. An example is Ortiz et al. (2022), who applied varying 
degrees of weak supervision. They employed historically guided U-Net, 
morphological snakes, and DEep Level Set Evolution (DELSE), based 
on the assumption that glacial lakes evolve gradually over time. They 
used low-resolution historical glacial lake labels to guide the segmen-
tation of more recent high-resolution satellite imagery and Bing maps. 
Similarly, Zhao et al. (2023) introduced weak supervision using NDWI 
within a contrastive loss-based Siamese neural network. They learned 
glacial lake representations by maximizing the similarity between input 
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satellite images and their augmentations, requiring no ground truth 
and only minimal supervision. However, the full potential of weakly 
supervised learning remains systematically underexplored in glacial 
lake studies. This presents a significant research opportunity.

4.4. Class categories, imbalance

Most supervised approaches formulate binary classification tasks 
to distinguish glacial lake pixels from the background. A few ex-
ceptions (Veh et al., 2018; Dirscherl et al., 2020, 2021; Halberstadt 
et al., 2020; Wendleder et al., 2021) incorporated additional classes 
like snow/ice, shadow, rock/land/sediment, debris, slush, firn, and 
cloud. Halberstadt et al. (2020) included even fine-grained classes such 
as blue ice, flowing ice, shallow lakes, deep lakes, cloud shadow, sunlit 
rock, and shadowed rock. In rare cases, the number of classes varied 
based on input data. For instance, Dirscherl et al. (2021) applied binary 
classification for S1 data but four-class classification for S2 data.

Both binary and multi-class classification can achieve accurate lake 
detection. Binary approaches are often simpler. Multi-class methods 
offer the added benefit of detailed surface characterization, at the cost 
of higher-quality training data and more complex models.

https://www.naturalearthdata.com/
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Fig. 5. Distribution of hyperparameters in deep learning-based glacial lake studies (number of publications in brackets). Some studies reported multiple loss 
functions (Basit et al., 2022; Cao et al., 2024) or optimizers (Chatterjee et al., 2022). More details are in (Appendix  F).
When framed as a two-class problem, the ‘‘lake’’ class is typically 
underrepresented, leading to class imbalance (He and Garcia, 2009). 
This uneven class distribution can bias the model toward the majority 
class: ‘‘background’’, resulting in poor performance on the minority 
class.

Standard strategies to address class imbalance include tailored loss 
functions (Section 4.5.1), strict evaluation metrics (Section 4.6), class-
dependent data augmentation (Section 4.5.3), and undersampling the 
majority class (Dirscherl et al., 2020; Yuan et al., 2020). Regardless of 
the strategy employed, addressing class imbalance is crucial in glacial 
lake studies and is strongly encouraged.

4.5. Deep learning approaches

4.5.1. Loss functions and optimization schemes
A loss function quantifies the difference between a model’s pre-

dictions and the actual ground truth labels, guiding the optimization 
process during model training (Wang et al., 2022b). By minimizing the 
loss, the model iteratively adjusts its parameters to improve predictions. 
In glacial lake studies, cross-entropy (He et al., 2021; Kaushik et al., 
2022, etc.) and Dice loss (Li et al., 2020; Hu et al., 2024, etc.) functions 
are the most commonly used (Fig.  5).

Cross-entropy is well-suited for multi-class classification, provid-
ing a straightforward approach to measure the divergence between 
predicted probabilities and true labels (Zhang and Sabuncu, 2018). It 
is also effective for binary classification. To address class imbalance, 
several glacial lake studies (Ortiz et al., 2022; Hardie et al., 2024, 
etc.) successfully employed weighted variants of cross-entropy. These 
variants assign higher weights to minority ‘‘lake’’ class samples during 
model training.

For binary semantic segmentation tasks, dice loss is particularly 
effective. It directly optimizes the overlap between predicted and actual 
foreground regions, mitigating the impact of class imbalance. While 
it can be extended to multi-class segmentation by computing per-
class dice scores, its ability to balance foreground and background 
contributions makes it especially valuable in tasks like glacial lake 
detection (Sudre et al., 2017). Tversky loss (Wu et al., 2020), an ex-
tension of dice loss, further enhances flexibility. It adjusts penalties for 
false positives and false negatives, making it useful when prioritizing 
precision or recall (Salehi et al., 2017).

Optimization strategies complement loss functions. Adaptive Mo-
ment (AdaM) is widely used (Fig.  5), followed by Stochastic Gradient 
Descent (SGD). AdaM combines the benefits of adaptive learning rates 
and momentum. This makes it particularly effective in handling sparse 
gradients or non-stationary objectives (Kingma and Ba, 2015).

Advanced variants like AdaMax and AdaBelief have been explored 
by Dirscherl et al. (2021) and Chatterjee et al. (2022), respectively. 
AdaMax extends AdaM to work effectively with infinite norms. It 
offers greater stability in sparse gradient scenarios and non-convex 
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optimization (Kingma and Ba, 2015). AdaBelief modifies the second-
moment estimation, leading to faster convergence and better general-
ization (Zhuang et al., 2020).

In contrast, SGD is used due to its relative simplicity and effective-
ness in large-scale problems. It is especially useful when computational 
efficiency is critical (Bottou, 2010). However, in its basic form, SGD 
may struggle with convergence on complex loss surfaces. Enhance-
ments like momentum or learning rate scheduling, as demonstrated by 
some glacial lake studies (Yuan et al. (2020), Wang et al. (2021) and Hu 
et al. (2024)), can address these issues.

In glacial lake studies, depending on the number of classes, it 
is recommended to use any of the above loss functions that effec-
tively tackle class imbalance. SGD optimization with momentum is 
recommended for large datasets or when resources are limited. AdaM 
variants are encouraged for complex, sparse data requiring quick model 
convergence.

4.5.2. Pre-training, transfer learning, & model adaptations
Instead of training from scratch, fine-tuning a DL model pre-trained 

on a large, labeled dataset mitigates issues like slow convergence 
and overfitting. Transfer learning allows adapting pre-trained model 
weights, reducing the need for extensive labeled data while enhancing 
generalization.

In satellite remote sensing, transfer learning is facilitated by publicly 
available large-scale datasets. Examples are BigEarthNet (Sumbul et al., 
2021), EuroSAT  (Helber et al., 2019), SpaceNet (Shermeyer et al., 
2020), and ImageNet (Deng et al., 2009; Krizhevsky et al., 2017). These 
datasets allow models to learn fundamental spatial features – such as 
edges, textures, and object structures – which can be repurposed for 
tasks like glacial lake segmentation (Weiss et al., 2016).

For instance, Qayyum et al. (2020) employed transfer learning for 
glacial lake mapping. They used EfficientNet (Tan and Le, 2019) as the 
backbone for a U-Net model, fine-tuning its higher layers for glacial 
lake detection.

Transfer learning is effective even when the original and target 
tasks differ significantly. While this capability has been extensively 
explored in related fields, such as lake ice monitoring, transfer learning 
remains underutilized in glacial lake studies. For instance, Tom et al. 
(2022) demonstrated that a DeepLabv3+ model pre-trained on close-
range imagery for a computer vision task could be successfully adapted 
for lake ice monitoring using SAR satellite data. This exemplifies the 
versatility of transfer learning and presents a promising avenue for 
glacial lake remote sensing research.

One challenge is that most DL models used for glacial lake studies 
were originally designed for generic computer vision tasks. Such models 
typically support only 3–4 input channels (e.g., RGB, RGB-depth). This 
design choice simplifies transfer learning but restricts the ability to fully 
exploit multispectral, hyperspectral, and radar-based remote sensing 
data. Only a few studies used more than four channels (Wu et al., 2020; 
He et al., 2021; Hu et al., 2024; Tang et al., 2024). Others have worked 
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around this limitation by empirically selecting the most relevant input 
spectral features (Section 3.3) or using automated feature importance 
analysis. However, such approaches may not have exploited the full 
potential of multi-source remote sensing data.

Expanding model architectures to accommodate a greater number of 
input channels, such as a dozen or more spectral bands, is technically 
straightforward. However, it presents a trade-off. While such modifi-
cations enhance the model’s ability to process diverse remote sensing 
data, they prevent the direct reuse of pre-trained weights, necessitating 
training from scratch. This increases computational costs and the risk 
of overfitting.

Furthermore, standard DL architectures are not optimized for radar-
specific features such as phase, backscatter, and polarization. This 
underscores the need for task-specific model adaptations. Therefore, to 
maximize the benefits of transfer learning for large-scale, data-efficient 
glacial lake studies, it is necessary to redesign existing architectures. 
These should accommodate a wider range of remote sensing inputs 
while still leveraging pre-trained feature representations.

4.5.3. Importance of data augmentation
Augmentation in DL is a strategy to mitigate data scarcity. By 

transforming existing data, this technique expands and diversifies the 
training dataset. It improves model robustness, generalization, and 
efficiency through exposure to diverse data variations, all without 
requiring additional data collection or labeling. However, the effective-
ness of augmentation strategies remains largely empirical and highly 
dependent on the dataset and model.

Glacial lake studies have applied spatial transformation operations 
such as patch flipping (Wang et al., 2022c, etc.), patch rotation (Cao 
et al., 2024, etc.), and patch mirroring (He et al., 2021, etc.). Spec-
tral distribution modifications were also explored. Wu et al. (2020) 
adjusted image saturation and brightness. Zhao et al. (2023) employed 
techniques like color jittering, random erasing, blurring, noise addition, 
and grayscale adjustments.

In Dirscherl et al. (2021), augmentation strategies were tailored per 
patch depending on the number of lake pixels in each patch. To address 
class imbalance, they oversampled the image patches with the un-
derrepresented ‘lake’ class. Additionally, they augmented challenging 
non-water patches (wet snow, shadow pixels, etc.).

Notably, only a few papers quantitatively evaluated the perfor-
mance impact of individual operations. For instance, Zhao et al. (2023) 
found that spatial transformations (𝐹1 score: 0.66) slightly outper-
formed spectral modifications (𝐹1 score: 0.65). Among individual tech-
niques, image flipping was most effective (𝐹1 score: 0.68), followed 
by color jittering (𝐹1 score: 0.67) and image rotation (𝐹1 score: 0.66). 
Based on these findings, they adjusted the probabilities of different 
augmentations to prioritize the most impactful ones.

Augmentation is a common practice in glacial lake studies. How-
ever, due to the limited number of studies that evaluate the impact 
of specific techniques quantitatively, it is difficult to generalize their 
utility across models and datasets. Future studies should systematically 
evaluate and optimize augmentation strategies.

4.5.4. Recommended strategies
Table  2 outlines recommended DL strategies for glacial lake detec-

tion under different scenarios. While outcomes may vary with model 
architecture and dataset characteristics (e.g., sensor type and resolu-
tion, region, class distribution, reference label noise), these strategies 
serve as empirically grounded starting points for method selection and 
adaptation.

Combining weak supervision (Section 4.3) with transfer learning 
(Section 4.5.2) offers a promising research direction. Ultimately, model 
selection should be driven by data availability. Supervised methods like 
U-Net are well-suited for data-rich environments if no transfer learn-
ing is involved. However, in data-scarce regions, weakly supervised 
approaches and pre-trained DL architectures offer viable alternatives. 
9 
Though DL has emerged as an exceptionally powerful tool in glacial 
lake remote sensing, there are some constraints. Firstly, DL models 
are relatively data-hungry, requiring large amounts of annotated refer-
ence data for training. Nevertheless, given the statistical nature of DL 
methodologies, performance improves with a broader and more diverse 
training dataset. However, fine-tuning may be necessary when applying 
such models to new regions or time periods. Secondly, DL meth-
ods require substantial computational resources, typically demanding 
powerful Graphics Processing Unit(s).

4.6. Choosing right evaluation metrics

Standard metrics such as recall (producer’s accuracy), 𝐹1 score, 
precision (user’s accuracy), IoU, and overall classification accuracy are 
the most commonly used in learning-based glacial lake studies. These 
metrics are depicted by the larger circles in Fig.  6. Recall measures the 
proportion of actual glacial lakes correctly identified, regardless of false 
positives. Conversely, precision evaluates the proportion of detected 
lakes that are actual lakes, reducing false identifications. IoU measures 
the overlap between predicted and actual truth, providing a robust met-
ric for image segmentation tasks. The 𝐹1 score balances precision and 
recall. Overall accuracy reflects the proportion of correctly classified 
pixels (both lake and background) in relation to the total number of 
pixels in the dataset.

Some studies employ specialized metrics. For instance, the Tver-
sky index (Wu et al., 2020) is designed to handle class imbalance 
while the Fréchet distance (Ortiz et al., 2022) measures shape simi-
larity. The coefficient of determination (Kaushik et al., 2022) evaluates 
the agreement between the predicted and reference lake boundaries. 
These tailored metrics highlight a growing interest toward addressing 
nuanced aspects of performance evaluation.

Overall classification accuracy was relatively more commonly re-
ported in early ML/DL studies (Fig.  6). However, overall accuracy 
alone is inadequate for class-imbalanced datasets, as it can misleadingly 
inflate performance results. Metrics such as IoU, 𝐹1 score, precision, 
recall, and the Tversky index, which are robust to class imbalance, 
are strongly recommended. While overall accuracy can provide useful 
context when combined with these stricter metrics, it should not be 
reported in isolation.

Additionally, some studies (He et al., 2021; Chen et al., 2022, etc.) 
reported the Kappa coefficient (Fig.  6). However, Pontius and Millones 
(2011) highlighted that Kappa indices can be misleading or flawed, 
particularly in remote sensing applications. These indices compare 
accuracy against a baseline of randomness, which is an unrealistic 
reference for map construction. This makes Kappa coefficient difficult 
to interpret and, in some cases, undefined. Consequently, its use is not 
recommended. The recent trend of reduced Kappa coefficient usage 
relative to other metrics (Fig.  6) aligns with this recommendation.

4.7. Performance inter-comparison: Insights, gaps, challenges

When proposing a novel glacial lake product, it is essential to 
benchmark its performance both quantitatively and qualitatively. This 
comparison should be made against existing state-of-the-art methods to 
substantiate performance gains. However, existing comparisons often 
differ in datasets, learning strategies, and evaluation metrics. This 
makes it difficult to draw definitive conclusions.

Qayyum et al. (2020) compared their U-Net model with GLakeMap
(Wangchuk and Bolch, 2020), an RF-assisted rule-based thresholding 
approach. Both methods performed well on large lakes. However, U-
Net outperformed GLakeMap on small lakes. This is likely due to the 
higher spatial resolution of PlanetScope (3 m) compared to S2 (10 m) 
used by the latter.

In contrast, using S2 data, Basit et al. (2022) outperformed (IoU 0.8 
vs. 0.71) Siddique et al. (2023), who relied on PlanetScope imagery. 
Interestingly, both used a U-Net model with an ImageNet -pretrained
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Table 2
DL recommendations for glacial lake detection under common application scenarios. CE stands for Cross Entropy.
 Extreme class imbalance: 
 • Use loss functions such as Focal, Tversky, Dice, weighted CE (avoid unweighted CE).
 • Augment the training set to increase underrepresented class samples.
 • Optimizers do not directly address class imbalance. However, Adam and SGD with momentum can support stable and faster convergence when used with 
imbalance-aware loss functions. Examples: Focal/Tversky + Adam, Dice + SGD (with momentum).

 

 Data scarcity: 
 • Use transfer learning and data augmentation.
 • When training from scratch, prefer relatively lightweight models (e.g., U-Net with MobileNetV2 or EfficientNet-B0 encoders) over deeper architectures like DeepLabv3+.
 • Optimizers like Adam can accelerate convergence on small datasets, but may require strong regularization (e.g., dropout) to prevent overfitting.

 

 Limited computational resources: 
 • Use models with lightweight backbones (e.g., U-Net or DeepLabv3+ with MobileNetV2 or EfficientNet-B0).
 • Use computationally efficient loss functions such as weighted CE together with memory-efficient optimizers like SGD (with momentum). While Adam may converge 
faster, it has relatively higher memory overhead and should be used selectively.

 

 Small lake detection: 
 • Use attention-based models (e.g., attention U-Net by He et al., 2021), noting added computational cost.
 • Use DeepLabv3+ with Atrous Spatial Pyramid Pooling (ASPP). Skip connections (in U-Net) and multi-scale context (in DeepLabv3+) enhance small target detection.

 

EfficientNetB0 backbone. Several factors likely contributed to these 
performance differences. While spatial and spectral resolution both 
influence model performance, their impact also depends on the training 
strategy. EfficientNetB0, optimized for larger datasets, may have un-
derfitted on PlanetScope’s limited spectral bands, hindering its ability 
to learn discriminative features. While PlanetScope offers finer spa-
tial resolution, it lacks broader spectral coverage, particularly in the 
ShortWave InfraRed (SWIR) range. This limitation could reduce lake-
background separability. The datasets also differed in size (1200 images 
for Basit et al. (2022) vs. 3525 for Siddique et al. (2023)). The loss 
function used also varied, with Basit et al. (2022) employing both focal
and Jaccard loss, while Siddique et al. (2023) used only focal loss. The 
use of Jaccard loss, which directly optimizes for IoU, likely contributed 
to Basit et al. (2022)’s higher performance.

Some studies have compared DL models with ML counterparts and 
thresholded spectral indices. For instance, Qayyum et al. (2020) com-
pared their Efficient-U-Net (CNN) model against standard ML models. 
They reported an 𝐹1 score of 0.94, significantly outperforming SVM 
(0.78) and RF (0.75). This highlights the advantages of U-Net.

Similarly, Wu et al. (2020) compared their U-Net model with RF and 
thresholded Modified Normalized Difference Water Index (MNDWI). 
They found that both U-Net and RF outperformed MNDWI in cases 
involving mountain shadows and frozen lakes. Their U-Net model 
effectively learned the spatial relationships between neighboring pix-
els. U-Net exhibited fewer misclassifications in low-reflectivity areas 
compared to RF.

Some DL-based studies have reported modest results as well. For 
example, Yuan et al. (2020) evaluated CNNs against RF and SVM, 
however observed only marginal improvements. This was because the 
number of test samples was not sufficient. Interestingly, all three ap-
proaches (CNN, SVM, RF) achieved more than 98.5% overall accuracy, 
recall and precision. This indicates a weak test set rather than an 
inherent shortcoming of CNN, thereby limiting the ability to discern 
meaningful differences in performance.

Few studies have systematically evaluated different deep learning 
architectures and backbone choices. For instance, He et al. (2021) 
incorporated a self-attention mechanism (Vaswani et al., 2017; Ghaffar-
ian et al., 2021) into U-Net. This resulted in only a slight improvement 
(𝐹1 score: 0.69) compared to the baseline U-Net (𝐹1 score: 0.68). Sim-
ilarly, Hu et al. (2024) enhanced U-Net by integrating a residual 
attention mechanism. This led to a 1.5% increase in 𝐹1 score and a 
three-fold acceleration in convergence. Wang et al. (2021) introduced
ACFNet, comparing it against Wu et al. (2020)’s U-Net and achieving a 
higher 𝐹1 score (0.91 vs. 0.88). While incremental, these improvements 
highlight the potential impact of architectural enhancements in DL 
models.

Cao et al. (2024) conducted a comprehensive comparison of SVM, 
RF, U-Net, U-Net with an EfficientNet backbone, and LinkNet vari-
ants. SVM had the lowest IoU (0.67). L12-LinkNet50 with heavy post-
processing [SLIC superpixel and Dense Conditional Random Field
10 
(CRF)] achieved the highest (0.91). RF, U-Net, and EfficientNet obtained 
IoUs of 0.68, 0.70, and 0.78, respectively. This study highlighted 
the importance of post-processing. Additionally, their findings demon-
strated that combining multiple loss functions, such as Lovász hinge and
dice loss, improves semantic segmentation performance.

Various studies have shown that DeepLab variants outperform U-
Net. For instance, on a dataset that includes glacial lakes from the 
Third Pole region, Tang et al. (2024) compared multiple variants 
of DeepLab and U-Net. They found that DeepLabv3+ with a Mo-
bileNetV3 (Howard et al., 2019) backbone achieved the highest per-
formance (IoU: 0.95). Their evaluation included challenging condi-
tions such as mountain shadows, frozen lakes, and wet ice. Other 
DeepLabv3+ variants with ResNet50 (He et al., 2016), Xception (Chollet, 
2017), and MobileNetV2 (Sandler et al., 2018) backbones followed 
closely (IoU: 0.94). U-Net variants performed slightly lower: ResNet50
(0.93), MobileNetV3 (0.92), and MobileNetV2 (0.92). The study demon-
strated that for the same backbone, DeepLabv3+ consistently outper-
formed U-Net.

Siddique et al. (2023) also improved the IoU from 0.71 to 0.73 by 
switching to a DeepLabv3+ model (backbone: MobileNetV2) from U-Net 
(backbone: EfficientNetB0). U-Net’s skip connections enable the fusion 
of low-level appearance details with high-level semantic features. This 
is important for accurately delineating lake boundaries, especially for 
small glacial lakes, because the skip connections preserve fine-grained 
spatial information by reintroducing high-resolution encoder features 
into the decoder (Fig.  7(a)). However, they can also propagate re-
dundant information, potentially introducing noise irrelevant to glacial 
lake segmentation. In contrast, DeepLabv3+ employs ASPP, which 
applies parallel dilated convolutions at multiple scales to enhance 
multi-scale feature extraction (Fig.  7(b)). Each dilation rate captures 
features over a different receptive field size. This allows the model 
to recognize small lakes based on fine textures, large lakes based on 
broad spatial context, and lakes with complex geometries by combin-
ing structural information at multiple scales. This improves detection 
performance across a wide range of lake sizes and shapes.

A notable gap remains in ensuring fair and comprehensive com-
parisons among methodologies. Some ML/DL methods (e.g., Xu et al., 
2023) have been compared only with thresholded spectral indices 
rather than against other state-of-the-art ML/DL approaches. In few 
cases (e.g., Dirscherl et al., 2020, 2021), there is no comparative 
analysis at all.

For a fair comparison, the approach being proposed should be 
evaluated at a study site where a high-performing method has already 
been tested. This is important because state-of-the-art algorithms might 
have been developed for entirely different regions. Alternatively, at 
least one such method may be implemented and evaluated on the 
region of interest. Despite the time and effort involved, such compar-
isons are essential for establishing the credibility of new approaches. 
Accordingly, they are strongly recommended.
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Fig. 6. Distribution (top) and yearly trend (bottom) of evaluation metrics based on 41 publications which reported detailed quantitative analysis. The legend 
indicates number of studies (in brackets) that used each metric, and circle radius reflects the usage frequency. Papers employing each metric are listed within 
respective circles.
A comprehensive comparison of top-performing methodologies on a 
fixed dataset is notably absent from the literature. Comparing ACFNet
(Wang et al., 2021) with Cao et al. (2024)’s highest-performing LinkNet
and Tang et al. (2024)’s best-performing DeepLabv3+ would pro-
vide valuable insights. Achieving this requires representative training 
datasets, along with rigorous cross-regional evaluations, model ex-
change, and standardized benchmarking protocols. Its findings could 
inform a truly generalizable ML/DL approach for global-scale glacial 
lake mapping and monitoring.

Ensuring reproducibility and transparency through open science 
practices is crucial for advancing intercomparisons in glacial lake re-
search. Initiatives like NASA’s Transform to OPen Science (TOPS, https:
//doi.org/10.5281/zenodo.10161527) lead the way in promoting open 
science. Some glacial lake studies have embraced this by making their 
code and/or data publicly accessible (Ortiz et al., 2022; Wang et al., 
11 
2022a, etc.), promoting transparency. However, majority of studies still 
do not, making it difficult to access datasets and reproduce results, 
particularly for researchers or end-users with limited programming 
expertise.

5. Discussion

DL methods are preferred over classical ML for glacial lake studies, 
comprising nearly two-thirds of reported papers and more than 50% 
of the proposed methodologies (Figs.  2, 3). While DL outperforms ML 
with sufficient data, it is slower and less interpretable. In contrast, ML 
methods remain valuable for their computational efficiency, relatively 
simpler parameter tuning, and lower risk of overfitting.

The choice of model architecture significantly influences perfor-
mance and adaptability across diverse glacial environments. Applying 

https://doi.org/10.5281/zenodo.10161527
https://doi.org/10.5281/zenodo.10161527
https://doi.org/10.5281/zenodo.10161527


M. Tom et al. Science of Remote Sensing 12 (2025) 100277 
Fig. 7. Architectures of key models. Conv, ReLU, and concat stand for convolution, Rectified Linear Unit, and concatenation respectively.
derivatives of U-Net or DeepLab architectures across different study 
sites is acceptable, as the primary focus is on studying glacial lake 
dynamics rather than model exploration. However, this approach prior-
itizes exploitation over exploration, potentially limiting the discovery 
of novel methods better suited to diverse environmental conditions.

The research community should embrace underexplored architec-
tures, including those successfully applied in other domains of Earth sci-
ence. For instance, Recurrent Neural Network (RNN)s, including Long 
Short-Term Memory (LSTM) networks (Sherstinsky, 2020; Hochreiter 
and Schmidhuber, 1997), are not recent innovations. However, their 
ability to capture fine-grained time-series dynamics (Ismail Fawaz 
et al., 2019) remains largely untapped in glacial lake studies. No 
research has applied these models to analyze temporal lake evolu-
tion. Current approaches rely on independent per-image predictions 
followed by simple multi-temporal analyses. RNNs typically require 
longer training times than CNNs. However, their potential for recog-
nizing temporal dynamics in glacial lake monitoring warrants further 
exploration.

A round-robin comparison of the best-performing methods would 
provide a clearer picture of the trade-offs between computational 
complexity and performance gains. Including a comprehensive cost–
benefit analysis would strengthen this comparison. Together, these 
efforts could better guide future methodological improvements.

A key challenge is the impact of pre-processing choices, such as at-
mospheric correction, on performance. Despite its computational cost, 
12 
the extent to which atmospheric correction improves model accuracy 
remains largely unquantified. Assessing its effect on classification per-
formance could optimize processing pipelines for large-scale glacial 
lake studies.

The relevance of ML/DL approaches depends on the application 
domain. These methods are valuable for regional-scale research where 
large numbers of lakes need to be analyzed efficiently. However, their 
utility is limited for site-specific applications – such as hydropower 
development in discrete or transboundary river basins – where field 
validation, in situ monitoring, and physically-based hazard modeling 
are typically required.

6. Conclusion and outlook

Glacial lakes are rapidly expanding due to climate change-driven 
glacier retreat, increasing the likelihood of outburst floods and impact-
ing human lives and infrastructure. Monitoring these lakes is crucial 
for assessing hazards, improving early warning systems, and managing 
freshwater availability. However, effective large-scale studies remain a 
challenge due to the remoteness of glacial lakes and limited in situ data. 
Learning-based approaches, particularly deep learning, have emerged 
as powerful tools, offering numerous opportunities for automating 
glacial lake mapping and monitoring. However, their full potential 
remains underexplored.
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This paper reviews the existing literature on classical machine 
learning and deep learning methodologies for remote sensing of glacial 
lakes. It surveys 48 studies, outlines their respective strengths and 
weaknesses, identifies key research gaps, and provides best practice 
recommendations.

Most studies have focused on glacial lakes in Asia, Greenland, 
and Antarctica. Critical regions such as the Andes and European Alps 
have received limited attention. Optical sensors, particularly Landsat-
8 and Sentinel-2, are widely used, complemented by Sentinel-1 radar 
data. Optical-only approaches have shown success in polar and moun-
tainous regions but rely heavily on the pre-selection of cloud-free 
images. Radar-only approaches, on the other hand, have been success-
ful in polar lowlands but are yet to prove effective in mountainous 
regions. Although radar data mitigates cloud-related issues, it requires 
extensive pre-processing to be analysis-ready. While both single- and 
multi-sensor approaches have been explored, multi-sensor fusion – es-
pecially SAR-optical combinations – has proven more effective. Despite 
these advances, mapping and monitoring glacial lakes in mountain-
ous terrain under cloudy conditions remains an unresolved challenge. 
Furthermore, detecting lakes smaller than 0.01 km2 remains challeng-
ing, primarily due to sensor resolution rather than methodological 
limitations.

Deep learning methods have demonstrated significant success in 
glacial lake studies. Convolutional neural networks, particularly U-
Net, DeepLab, and their variants, have emerged as prominent ap-
proaches. More deep learning approaches have been published com-
pared to classical machine learning and continue to be increasingly 
reported. Among machine learning methods, random forests and sup-
port vector machines have been widely explored. A strong preference 
for pixel-wise supervised classification is evident. Weakly supervised 
learning approaches remain underexplored, despite their potential to 
reduce reliance on extensive ground truth labels. Transfer learning 
and data augmentation have significantly alleviated the bottleneck 
of limited labeled data availability. Consequently, training parameter-
intensive deep learning models has become more feasible. Nonetheless, 
high computational costs continue to limit their broader adoption in 
resource-constrained settings.

To advance robust and scalable glacial lake mapping and monitor-
ing, learning-based approaches must meet several key criteria. High 
accuracy on primary study sites is essential. Equally important is the 
ability to generalize across space and time. Ideally, models should 
adapt to new study regions with minimal retraining. They should also 
accurately capture intra-annual lake dynamics.

However, several challenges and opportunities remain. Relatively 
few studies investigate the transferability of their models across study 
sites and time periods. This raises concerns about generalizability, 
especially since data-driven approaches are susceptible to overfitting 
on less representative datasets. Rigorous spatiotemporal transferability 
experiments with both quantitative and qualitative evaluations must be 
prioritized.

Moreover, many studies focused on seasonal mapping of glacial 
lakes rather than year-round monitoring of their temporal evolution. 
This limits the ability to track intra-annual variations. Future stud-
ies should shift focus to multi-temporal analyses. Expanding training 
datasets with reference data spanning multiple seasons and years is 
equally important. Additionally, emerging deep learning models ca-
pable of learning seasonal and inter-annual variations need to be 
leveraged to capture dynamic glacial lake evolution.

Existing learning-based approaches, especially deep learning, while 
effective, operate as black-box models that may violate hydrologi-
cal and glaciological constraints. Integrating physical principles into 
data-driven models offers a compelling opportunity to enhance inter-
pretability, explainability and ensure physical consistency. By aligning 
predictions with known physical behaviors and ensuring physically 
plausible outputs, unrealistic extrapolations in poorly observed regions 
can be prevented.
13 
For fair and transparent performance evaluation, future studies 
should employ robust evaluation metrics that do not overlook class 
imbalance and stick to standardized benchmarking protocols. High-
resolution (spatial) imagery (e.g., PlanetScope, Pléiades, UAV) may be 
used to improve detection of lakes smaller than 0.01 km2. However, 
the associated costs and limited scalability must be considered. Re-
search should be expanded to underrepresented regions. Open-sourcing 
datasets, ground truth labels, and code could further advance learning-
based glacial lake monitoring from space.
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Table A.3
Overview of satellite imagery and topographic data used in learning-based glacial lake studies.
 Category Sensor (count) Publication(s)  
 

Optical satellite 
imagery

Landsat-8 (22) Veh et al. (2018), Halberstadt et al. (2020), Yuan et al. (2020), Wu et al. (2020), He et al. (2021), Wang et al. (2021), 
Thati et al. (2021), Zhao et al. (2021), Chen et al. (2022), Dell et al. (2022), Kaushik et al. (2022), Thati and Ari (2022), 
Wang et al. (2022a,c), Banerjee and Bhuiyan (2023), Sharma and Prakash (2023), Zhao et al. (2023), Hardie et al. 
(2024), Sharma et al. (2024), Tang et al. (2024), Wang and Sugiyama (2024) and Xu et al. (2024) 

 

 Sentinel-2 (20) Dirscherl et al. (2020), Wangchuk and Bolch (2020), Rinzin et al. (2021), Dirscherl et al. (2021), Wendleder et al. (2021), 
Basit et al. (2022), Chatterjee et al. (2022), Hu et al. (2022), Kaushik et al. (2022), Ortiz et al. (2022), Lutz et al. (2023), 
Niu et al. (2023), Wei et al. (2023), Xu et al. (2023), Hu et al. (2024), Mustafa et al. (2024), Wang and Sugiyama (2024), 
Wu et al. (2024), Xu et al. (2024) and Yin et al. (2024) 

 

 Planetscope (5) Qayyum et al. (2020), Wendleder et al. (2021), Siddique et al. (2023), Thomas et al. (2023) and Xu et al. (2024)  
 Landsat-Other (2) Veh et al. (2018) and Banerjee and Bhuiyan (2023)  
 Landsat-7 (1) Banerjee and Bhuiyan (2023)  
 ASTER (1) Jain et al. (2015)  
 Corona KH-4 (1) Rinzin et al. (2021)  
 IRS LISS III (1) Sharma and Prakash (2023)  
 Radar satellite 
imagery

Sentinel-1 (15) Wangchuk and Bolch (2020), Wu et al. (2020), Zhang et al. (2020b), Dirscherl et al. (2021), How et al. (2021), Rinzin 
et al. (2021), Wang et al. (2021), Jiang et al. (2022), Kaushik et al. (2022), Wendleder et al. (2021), Xu et al. (2023), Hu 
et al. (2024), Mustafa et al. (2024), Wu et al. (2024) and Xu et al. (2024) 

 

 TerraSAR-X (1) Wendleder et al. (2021)  
 GaoFen-3 (1) Chen (2021)  
 

DEM

SRTM (7) Veh et al. (2018), Wangchuk and Bolch (2020), Rinzin et al. (2021), Wang et al. (2022c), Banerjee and Bhuiyan (2023), 
Mustafa et al. (2024) and Yin et al. (2024) 

 

 ArcticDEM (5) How et al. (2021), Hu et al. (2022), Lutz et al. (2023), Wei et al. (2023) and Wang and Sugiyama (2024)  
 ASTER (3) Sharma and Prakash (2023), Hardie et al. (2024) and Sharma et al. (2024)  
 ALOS (3) Veh et al. (2018), Kaushik et al. (2022) and Xu et al. (2023)  
 NASADEM (2) Chen et al. (2022) and Hu et al. (2024)  
 TanDEM-X (2) Dirscherl et al. (2020, 2021)  
 Copernicus DEM (1) Xu et al. (2024)  
Appendix B. Search methodology for literature review

To ensure a comprehensive review of glacial lake remote sensing 
studies that used ML/DL, we conducted a structured literature search 
using web of science and google scholar . We included all relevant studies 
published through the end of 2024 (inclusive).

For web of science, we used the search string: [glacial lakes OR
glacier lakes] AND [deep learning OR machine learning].

In google scholar, we used the following keyword combinations:
glacial lakes deep learning, glacial lakes machine learning, glacier lakes deep 
learning, glacier lakes machine learning, proglacial lakes, ice-dammed lakes, 
supraglacial lakes, glacial lakes, and glacier lakes.

During the selection process, we first screened titles and abstracts 
to filter out irrelevant studies. We prioritized peer-reviewed journal 
articles and conference proceedings. Although google scholar offers 
an extensive search scope, it also returns non-peer-reviewed sources 
(e.g., preprints), which were excluded. ML/DL papers focusing on 
general glacier dynamics without addressing glacial lakes were also 
excluded. Finally, we thoroughly examined the reference lists of short-
listed papers to identify any additional relevant studies.

Appendix C. Methodology distribution

See Table  C.4.

Appendix D. Variants of U-Net and Deeplab

See Table  D.5. 

Appendix E. Regional distribution

See Table  E.6.

Appendix F. Loss functions and optimization strategies used

See Tables  F.7 and F.8.
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Appendix G. Glossary

AdaM Adaptive Moment.

AI Artificial Intelligence.

ANN Artificial Neural Network.

ASPP Atrous Spatial Pyramid Pooling.

C-K-MEANS Cascaded K-Means.

CNN Convolutional Neural Network.

CRT Classification and Regression Trees.

DCNN Deep Convolutional Neural Network.

DELSE DEep Level Set Evolution.

DEM Digital Elevation Model.

DL Deep Learning.

EBT Ensemble-Bagged Trees.

FPN Feature Pyramid Network.

GAN Generative Adversarial Network.

GLOF Glacial Lake Outburst Flood.

HMA High Mountain Asia.

IoU Intersection-over-Union.

KNN K-Nearest Neighbors.
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Table C.4
Overview of ML and DL methods used for glacial lake remote sensing.

Methodology [count] Publication(s)

ML [31] RF [12] Veh et al. (2018), Dirscherl et al. (2020), Halberstadt et al. (2020), Wangchuk and Bolch (2020), 
Rinzin et al. (2021), Wendleder et al. (2021), Chen et al. (2022), Dell et al. (2022), Hu et al. 
(2022), Banerjee and Bhuiyan (2023), Mustafa et al. (2024) and Wang and Sugiyama (2024)

SVM [4] Jain et al. (2015), Halberstadt et al. (2020), Zhang et al. (2020b) and Mustafa et al. (2024)
K-MEANS+ [3]

 K-MEANS [2] Thati et al. (2021) and Wu et al. (2024)
 Cascaded K-Means (C-K-MEANS) [1] Wu et al. (2024)

Artificial Neural Network (ANN) [2] Banerjee and Bhuiyan (2023) and Mustafa et al. (2024)
Others [10]

 Logistics Regression (LR) [1] Mustafa et al. (2024)
 Maximum Entropy (ME) [1] Halberstadt et al. (2020)
 Naive Bayes (NB) [1] Halberstadt et al. (2020)
 Classification and Regression Trees (CRT) [1] Halberstadt et al. (2020)
 Minimum Distance (MD) [1] Halberstadt et al. (2020)
 Ensemble-Bagged Trees (EBT) [1] How et al. (2021)
 ISODATA [1] Thati et al. (2021)
 Learning Vector Quantization (LVQ) [1] Wu et al. (2024)
 K-Nearest Neighbors (KNN) [1] Mustafa et al. (2024)
 X-MEANS [1] Wu et al. (2024)

DL [39] CNN Variants [37]
 U-Net [18] Qayyum et al. (2020), Wu et al. (2020), Chen (2021), Dirscherl et al. (2021), He et al. (2021), 

Basit et al. (2022), Jiang et al. (2022), Ortiz et al. (2022), Thati and Ari (2022), Wang et al. 
(2022a), Lutz et al. (2023), Niu et al. (2023), Sharma and Prakash (2023), Siddique et al. (2023), 
Wei et al. (2023), Hu et al. (2024), Sharma et al. (2024) and Tang et al. (2024)

 DeepLab Variants [6] Siddique et al. (2023), Xu et al. (2023), Hardie et al. (2024), Sharma et al. (2024), Tang et al. 
(2024) and Xu et al. (2024)

 CNN [2] Yuan et al. (2020) and Thomas et al. (2023)
 LinkNet [2] Thati and Ari (2022) and Cao et al. (2024)
 Others [9]

ACFNet [1] Wang et al. (2021)
Mask-R-CNN [1] Chatterjee et al. (2022)
Feature Pyramid Network (FPN) [1] Thati and Ari (2022)
HarDNet (Second-order Attention Network) [1] Wang et al. (2022c)
Siamese CNN [1] Zhao et al. (2023)
Deep Convolutional Neural Network (DCNN) [1] Kaushik et al. (2022)
You Only Look Once (YOLO) [1] Yin et al. (2024)
CoAtNet [1] Xu et al. (2023)
PSPNet [1] Thati and Ari (2022)

Others [2]
 Generative Adversarial Network (GAN) [1] Zhao et al. (2021)
 DELSE [1] Ortiz et al. (2022)
L8 Landsat-8.

LR Logistics Regression.

LVQ Learning Vector Quantization.

MD Minimum Distance.

ME Maximum Entropy.

ML Machine Learning.

MLE Maximum Lake Extent.

MNDWI Modified Normalized Difference Water Index.

NB Naive Bayes.

NDWI Normalized Difference Water Index.

NIR Near InfraRed.

PPC Per-Pixel Classification.

RF Random Forest.

RNN Recurrent Neural Network.

S1 Sentinel-1.
15 
S2 Sentinel-2.

SAR Synthetic Aperture Radar.

SGD Stochastic Gradient Descent.

SVM Support Vector Machine.

SWOT Surface Water and Ocean Topography.

ToA Top of Atmosphere.

UAV Unmanned Aerial Vehicle.

YOLO You Only Look Once.

Data availability

No data was used for the research described in the article.
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Table D.5
Different variants of U-Net and DeepLab architectures applied in glacial lake studies. ReLU and FCN stand for Rectified Linear Unit and Fully Convolutional 
Neural Network, respectively.
 Publication Network Strategy  
 Qayyum et al. (2020)

U-Net

Backbones: VGGNet (Simonyan and Zisserman, 2015), EfficientNet (Tan and Le, 2019)  
 Wu et al. (2020) –  
 Chen (2021) –  
 Dirscherl et al. (2021) Leaky ReLU (Nair and Hinton, 2010; Maas et al., 2013), ResNet (He et al., 2016) backbone, dropout (Srivastava 

et al., 2014),
 

 ASPP for multi-scale feature extraction  
 He et al. (2021) Self-attention  
 Basit et al. (2022) EfficientNetB0 backbone and ImageNet (Deng et al., 2009) pre-trained weights  
 Jiang et al. (2022) Attention-based  
 Ortiz et al. (2022) Historically guided  
 Thati and Ari (2022) GLU-Net with deeper and nested skip connections (He et al., 2016), and pre-processing tailored for remote 

sensing data
 

 Wang et al. (2022a) NDWI-attention  
 Lutz et al. (2023) Deeper (two extra layers)  
 Niu et al. (2023) Attention-based  
 Sharma and Prakash (2023) FCN-based (fully convolutional layers) network with ResNet34 backbone  
 Siddique et al. (2023) EfficientNetB0 backbone  
 Wei et al. (2023) –  
 Hu et al. (2024) Residual attention [ResNet50 (He et al., 2016) backbone + convolutional block attention module (Woo et al., 

2018)]
 

 Sharma et al. (2024) ResNet34 (He et al., 2016) backbone  
 Tang et al. (2024) Backbones: ResNet50, Xception (Chollet, 2017), MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al., 

2019)
 

 Siddique et al. (2023)

Deeplab

Deeplab v3+ (Chen et al., 2018b) MobileNetV2 backbone  
 Xu et al. (2023) Panoptic deeplab  
 Hardie et al. (2024) Deeplab v3+ with ResNet18 backbone  
 Sharma et al. (2024) Deeplabv3 with ResNet50 backbone  
 Tang et al. (2024) Deeplab v3+ with ResNet50, MobileNetV2, MobileNetV3, Xception backbones  
 Xu et al. (2024) Deeplab v3+ with Xception-65 backbone  
Table E.6
Regional distribution of traditional and learning-based approaches. ML/DL publications that reported these regions as primary or transferability study sites are 
shown separately. Within-region transferability sites are not shown.
 Region Notable non-ML publication(s) ML/DL publication(s) [as primary study site] ML/DL publication(s) [as 

transferability study site]
 

 Antarctica Stokes et al. (2019), Moussavi et al. (2020), 
Arthur et al. (2020) and Corr et al. (2022)

Dirscherl et al. (2020), Halberstadt et al. (2020), 
Dirscherl et al. (2021), Dell et al. (2022) and Niu 
et al. (2023)

–  

 Greenland Sundal et al. (2009), Liang et al. (2012) and 
Carrivick and Tweed (2019)

Yuan et al. (2020), How et al. (2021), Hu et al. 
(2022), Jiang et al. (2022), Lutz et al. (2023), Wei 
et al. (2023) and Wang and Sugiyama (2024)

Dirscherl et al. (2021) 
and Tang et al. (2024)

 

 HMA Quincey et al. (2007), Bajracharya and Mool 
(2009), Bolch et al. (2011, 2012), Worni et al. 
(2013), Wang et al. (2013), Zhang et al. (2015), 
Allen et al. (2016), Nie et al. (2017), Wang et al. 
(2020), Ahmed et al. (2021), Chen et al. (2021) 
and Sajan et al. (2024)

Jain et al. (2015), Veh et al. (2018), Qayyum 
et al. (2020), Wangchuk and Bolch (2020), Wu 
et al. (2020), Zhang et al. (2020b), Chen (2021), 
He et al. (2021), Rinzin et al. (2021), Thati et al. 
(2021), Wang et al. (2021), Wendleder et al. 
(2021), Zhao et al. (2021), Basit et al. (2022), 
Chen et al. (2022), Hu et al. (2022), Kaushik et al. 
(2022), Ortiz et al. (2022), Thati and Ari (2022), 
Wang et al. (2022a,c), Banerjee and Bhuiyan 
(2023), Sharma and Prakash (2023), Siddique 
et al. (2023), Xu et al. (2023), Zhao et al. (2023), 
Cao et al. (2024), Hardie et al. (2024), Hu et al. 
(2024), Mustafa et al. (2024), Sharma et al. 
(2024), Tang et al. (2024), Wu et al. (2024), Xu 
et al. (2024) and Yin et al. (2024)

–  

 Andes Loriaux and Casassa (2013), Bourgois et al. 
(2016), Emmer et al. (2016), Cook et al. (2016), 
Wilson et al. (2018), Emmer et al. (2020) and 
Veettil and Kamp (2021)

Wangchuk and Bolch (2020) Qayyum et al. (2020) 
and Tang et al. (2024)

 

 Canada Veillette (1994) and Clague and Evans (2000) – –  
 Alaska Rick et al. (2022) – Tang et al. (2024)  
 Russia Shugar et al. (2020) – –  
 Scandinavia Breien et al. (2008) and Andreassen et al. (2022) – –  
 Alps Huggel et al. (2002), Emmer et al. (2015) and 

Mölg et al. (2021)
Wangchuk and Bolch (2020) –  

 Iceland Carrivick and Tweed (2019) – –  
 New Zealand Warren and Kirkbride (1988) – –  
16 
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Table F.7
Overview of loss functions reported.
 Loss function (count) Publication(s)  
 Cross Entropy (12) Yuan et al. (2020), Dirscherl et al. (2021), He et al. (2021), Basit et al. (2022), Jiang et al. (2022), Kaushik et al. (2022), Ortiz et al. (2022), Lutz 

et al. (2023), Xu et al. (2023), Cao et al. (2024), Hardie et al. (2024) and Tang et al. (2024) 
 

 Dice (7) Li et al. (2020), Wang et al. (2021), Thati and Ari (2022), Wang et al. (2022a,c), Cao et al. (2024) and Hu et al. (2024)  
 Focal (3) Basit et al. (2022), Siddique et al. (2023) and Thomas et al. (2023)  
 Tversky (1) Wu et al. (2020)  
 Lovasz Hinge (1) Cao et al. (2024)  
 Others (4) Qayyum et al. (2020), Zhao et al. (2021), Basit et al. (2022) and Zhao et al. (2023)  
Table F.8
Overview of optimization algorithms reported.
 Optimizer (count) Publication(s)  
 Adam (15) Wu et al. (2020), He et al. (2021), Zhao et al. (2021), Basit et al. (2022), Kaushik et al. (2022), Wang et al. (2022c), Lutz et al. (2023), Sharma 

and Prakash (2023), Siddique et al. (2023), Thomas et al. (2023), Wei et al. (2023), Zhao et al. (2023), Cao et al. (2024), Hardie et al. (2024) 
and Tang et al. (2024) 

 

 SGD (7) Yuan et al. (2020), Wang et al. (2021), Chatterjee et al. (2022), Ortiz et al. (2022), Thati and Ari (2022), Wang et al. (2022a) and Hu et al. 
(2024)

 

 AdaMax (1) Dirscherl et al. (2021)  
 AdaBelief (1) Chatterjee et al. (2022)  
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